An Autophagic Role in Alzheimer's Disease for Intermittent Dietary Periods of Very Low-protein, High-carbohydrate Intake

James W. Hill, MD University of Southern California School of Medicine, Los Angeles, California USA

Hypothesis:

Intermittent periods of very low-protein, high-carbohydrate dietary intake may enhance autolysosomal proteolysis in Alzheimer's disease (AD) by increasing activity of transcription factor EB (TFEB).

Background:

AD is characterized by 1) activation of neuronal autophagy with defective autolysosomal degradation, 1 and 2) neuronal insulin resistance, characterized by increased amyloid- β (A β) production in autophagosomes and reduced neuronal internalization of extracellular A β oligomers. 2

Translocation of TFEB from cytosol to nucleus increases transcription of 291 genes and thereby induces autophagy,³ lysosomal biogenesis, acidification, and proteolysis.⁴

Phosphorylation of TFEB by mammalian target of rapamycin complex 1 (mTORC1)⁵ and by glycogen synthase kinase 3 (GSK3)⁶ inhibits TFEB nuclear translocation.

GSK3 inhibition in transgenic AD mice increases acidification of lysosomes, reduces Aβ deposits, and ameliorates cognitive deficits.⁷

Why very low protein intake?

mTORC1 phosphorylation of TFEB is inhibited by amino acid starvation, even in the presence of strong insulin signaling.⁸ Very low protein intake, combined with GSK3 inhibition, is therefore expected to promote TFEB nuclear translocation.

Why high carbohydrate intake?

High carbohydrate intake raises postprandial serum insulin, which inhibits GSK3⁹ and presumably therefore reduces GSK3's phosphorylation of TFEB. Combined with mTORC1 inhibition, enhanced insulin signaling should thereby promote TFEB nuclear translocation.

This hypothesis awaits testing, e.g., in a transgenic AD mouse model.

- 1 Nixon RA, Yang DS. Autophagy failure in Alzheimer's disease—locating the primary defect. Neurobiology of Disease (2011) 43(1): 38-45
- ² Talbot K, et al. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. (2012) 122(4): 1316–1338.
- ³ Settembre C, et al. TFEB Links Autophagy to Lysosomal Biogenesis. Science (2011) 332(6036): 1429-1433.
- 4 Sardiello M, et al. A Gene Network Regulating Lysosomal Biogenesis and Function. Science (2009) 325(5939): 473-477.
- 5 Settembre C, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. The EMBO Journal (2012) 31, 1095-1108.
- ⁶ Parr C, et al. GSK3 inhibition promotes lysosomal biogenesis and the autophagic degradation of the Amyloid-β Precursor Protein. Mol. Cell. Biol. (2012) 32(21): 4410-4418.
- ⁷ Avrahami L, et al. Inhibition of GSK-3 Ameliorates beta-Amyloid(A-beta) Pathology and Restores Lysosomal Acidification and mTOR Activity in the Alzheimer's Disease Mouse Model. In vivo and In vitro Studies. J Biol Chem (2012) Nov 15.
- Settembre C, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. The EMBO Journal (2012) 31, 1109-1108
- ⁹ Collino M, et al. Insulin Reduces Cerebral Ischemia/Reperfusion Injury in the Hippocampus of Diabetic Rats. A Role for Glycogen Synthase Kinase-3β. Diabetes (2009) 58(1): 235-242.